Archive

Archive for the ‘Science’ Category

Quantum teleportation revisit: Now with wormholes!

December 12, 2017 1 comment

Six years ago, I wrote a couple of posts on this blog musing about the physics behind quantum teleportation — first proposing a model in which quantum entanglement could resolve the philosophical condundrum of whether continuity of self could be maintained, then getting into some of the practical limitations that made quantum teleportation of macroscopic objects or people unlikely to be feasible. I recently came upon an article that offers a potential new angle, basically combining the idea of quantum teleportation with the idea of a wormhole.

The article, “Newfound Wormhole Allows Information to Escape Black Holes” by Natalie Wolchover, was published in Quanta Magazine on October 23, 2017. It’s talking about a theoretical model devised by Ping Gao, Daniel Jafferis, and Aron C. Wall, a way that a stable wormhole could exist without needing some kind of exotic matter with arbitrary and probably physically unattainable properties in order to keep it open. Normally, a wormhole’s interior “walls” would attract each other gravitationally, causing it to instantly pinch off into two black holes, unless you could line them with some kind of magic substance that generated negative energy or antigravity, like shoring up a tunnel in the dirt. That’s fine for theory and science fiction, but in practical terms it’s probably impossible.

The new model is based on a theory that’s been around in physics for a few years now, known in short as “ER = EPR” — namely, that wormholes, aka Einstein-Rosen bridges, are effectively equivalent to quantum entanglement between widely separated particles, or Einstein-Podolsky-Rosen pairs. (Podolsky, by the way, is Boris Podolsky, who lived and taught here in Cincinnati from 1935 until his death, and was the graduate advisor to my Uncle Harry. I was really impressed when I learned my uncle was only two degrees of separation from Einstein.) The EPR paradox, which Einstein nicknamed “spooky action at a distance,” is the way that two entangled particles can affect each other’s states instantaneously over any distance — although in a way that can’t be measured until a light signal is exchanged between them, so it can’t be used to send information faster than light. Anyway, it’s been theorized that there might be some sort of microscopic wormhole or the equivalent between the entangled particles, explaining their connection. Conversely, the two mouths of a wormhole of any size could be treated as entangled particles in a sense. What the authors of this new paper found was that if the mouths of a wormhole were created in a way that caused them to be quantum-entangled — for instance, if one of them were a black hole that was created out of Hawking radiation emitted from another black hole (it’s complicated), so that one was a direct outgrowth of the other on a quantum level — then the entanglement of the two black holes/mouths would create, in the words of the paper’s abstract, “a quantum matter stress tensor with negative average null energy, whose gravitational backreaction renders the Einstein-Rosen bridge traversable.” In other words, you don’t need exotic matter to shore up the wormhole interior, you just need a quantum feedback loop between the two ends.

Now, the reason for all this theoretical work isn’t actually about inventing teleportation or interstellar travel. It’s more driven by a strictly theoretical concern, the effort to explain the black hole information paradox. Conservation of energy says that the total amount of energy in a closed system can’t be increased or decreased. Information is energy, and the universe is a closed system, so the total amount of information in the universe should be constant. But if information that falls into a black hole is lost forever, then conservation is violated. So for decades, physicists (notably Stephen Hawking) have been exploring the question of whether it’s possible to get information back out of a black hole, and if so, how. This paper was an attempt to resolve that question. A traversable wormhole spinning off from a black hole provides a way for information to leave the interior of the black hole, resolving the paradox.

I only skimmed the actual paper, whose physics and math are way beyond me, but it says that this kind of entangled wormhole would only be open for a very brief time before collapsing. Still, in theory, it could be traversable at least once, which is better than previous models where the collapse was instantaneous. And if that much progress has been made, maybe there’s a way to refine the theory to keep the wormhole open longer.

There’s a catch, though. Physical law still precludes information from traveling faster than light. As with quantum teleportation, there is an instantaneous exchange of information between the two ends, but that information remains in a latent, unmeasurable state until a lightspeed signal can travel from the transmitting end to the receiving end. So a wormhole like this, if one could be created and extended over interstellar distances, would not allow instantaneous travel. A ship flying into one end of the wormhole would essentially cease to exist until the lightspeed signal could reach the other end, whereupon it would emerge at long last.

However — and this is the part that I thought of myself as an interesting possibility for fiction — this does mean that the ship would be effectively traveling at the speed of light. That in itself is a really big deal. In a physically realistic SF universe, it would take an infinite amount of energy and time to accelerate to the speed of light, and once you got fairly close to the speed of light, the hazards from oncoming space dust and blueshifted radiation would get more and more deadly. So as a rule, starships would have to stay at sublight speeds. In my original fiction I’ve posited starships hitting 80 or 90 percent of c, but even that is overly optimistic. So in a universe where starships would otherwise be limited to, say, 30 to 50 percent of lightspeed, imagine how remarkable it would be to have a wormhole transit system that would let a starship travel at exactly the speed of light. Moreover, the trip would be instantaneous from the traveler’s perspective, since they’d basically be suspended in nonexistence until the lightspeed signal arrived to “unlock” the wormhole exit. It’s not FTL, but it’s L, and that alone would be a damned useful stardrive. You could get from Earth to Alpha Centauri in just 4.3 years, and the trip would take no time at all from your perspective, except for travel time between planet and wormhole mouth. You’d be nearly 9 years younger than your peers when you got home — assuming the wormhole could be kept open or a second temporary wormhole could be generated the other way — but that’s better than being 2 or 3 decades younger. Short of FTL, it’s the most convenient, no-fuss means of interstellar travel I can think of.

Or, looked at another way, it’s a method for interstellar quantum teleportation that avoids all the scanning/transmission obstacles and impracticalities I talked about in my second 2011 post on the subject. No need to use a technological device to scan a body with a level of detail that would destroy it, then transmit a prohibitively huge amount of data that might take millennia to send in full. You just pop someone into one end of a wormhole and make sure the handshake signal is transmitted strongly enough to reach the other end. I’ve long felt that wormhole-based teleportation would be a more sensible approach than the disintegration-based kind anyway. Although we’re technically talking about black holes, so it wouldn’t be the sort of thing where you could just stand on a platform in your shirtsleeves and end up somewhere else. Also, there might be a little problem with getting torn apart by tidal stresses at either end. I’m not sure the paper addresses that.

This idea could be very useful for a hard-SF universe. My problem is that the universes I have established are a little less hard than that, though, since I tend to like working in universes with FTL travel of one sort or another. But maybe some idea will come to me for a future story. And maybe some other writer will read this and get an idea. We’re all in this together, and any worthwhile SF concept can inspire multiple very different stories.

Advertisements

Ars Technica interviewed me on STAR TREK transporters

September 23, 2017 5 comments

You may recall that last year, Xaq Rzetelny of the science site Ars Technica interviewed me about Star Trek temporal physics. Well, Xaq recently came across my 2011 post “On quantum teleportation and continuity of self,” and sought my input for an article tackling the same basic question for Star Trek transporters — whether or not the person who comes out of the transporter is the same one who went in. It’s a detailed and well-researched piece that also contains comments from folks like Michael Okuda and Lawrence Krauss, and you can read it here:

Is beaming down in Star Trek a death sentence?

Thoughts on LIFE (the 2017 film, not, y’know, the general state of existence) (spoilers)

After growing up with countless sci-fi films and TV shows that totally ignored the fact that the “sci” was short for “science,” I’ve been quite pleased with the trend in recent years to make more movies that are grounded in plausible science, such as Gravity, Europa Report, Interstellar, and The Martian. The movie Life, directed by Daniel Espinoza and written by Rhett Reese and Paul Wernick, is the latest entry in the hard-science movie trend, and is mostly quite impressive. It’s set on the International Space Station in the near future (very near, since a character played by 36-year-old Jake Gyllenhaal reminisces about being taken out of school on the day of the Challenger disaster 31 years ago), with its 6-person international crew studying a single-celled life form brought back by a Mars sample probe. Dubbed “Calvin,” the Martian organism quickly grows into a multicellular colony creature of great adaptability, and when things inevitably go wrong, the creature breaks out and it becomes a horror movie.

The science and realism in Life are top-notch. Espinoza and his team consulted with scientists and space experts to make the ISS environment as realistic as possible. It’s quite remarkable — like Gravity, it’s set almost entirely in free fall, but with six actors instead of two and with much more time spent in shirtsleeve environments within the ISS rather than in spacesuits. And the simulation of free fall is quite good. There are a couple of moments here and there where body parts or worn/held items sag downward, but mostly it’s very convincing. The filmmakers studied real ISS footage and consulted with astronauts, and the stunt team and actors worked out a very convincing replication of the real thing, more casual and natural than the stock “move very slowly” approach to weightlessness we’ve seen in countless movies before. It makes for a very novel and engaging viewing experience. The Calvin creature is also quite a creative design, convincingly unlike anything on Earth (well, almost anything — apparently the designers were inspired by slime mold colonies to an extent). And for the most part, it doesn’t really feel like a horror movie with a fanciful monster. It’s so grounded that it just feels like a drama about scientists dealing with an animal (albeit an alien one) that’s gotten out of control. The main scientist who studies the creature (Hugh, played by Ariyon Bakare) points out, even after being badly injured by Calvin, that it’s just following its instinct to survive and bears no malice.

Character-wise, I think the movie does a good job. The characters have a good mix of personalities, but they’re all played as professionals who know how to stay calm under pressure. There are some moments when they give into fear or anger, but then they get it together and work the problem. Ryan Reynolds is maybe a bit exaggerated as the standard cocky, wiseass space guy, not unlike George Clooney’s Gravity character, but he has some good moments — especially one where he’s in the lab with the escaped creature and Gyllenhaal’s character slams the hatch shut with him inside. Reynolds meets his eyes for a moment, then just nods and says “Yeah,” a quiet, almost casual acknowledgment that he did the right thing and is forgiven. Rebecca Ferguson is pretty solid as the “planetary protection officer,” the designer of the “firewalls” meant to prevent contamination between the humans and any alien life. She’s the one who bears the most responsibility for the steps that must be taken when the creature escapes, steps that the crew members know they might not survive, and Ferguson bears that weight with convincing professionalism. Hiroyuki Sanada and Olga Dihovichnaya round out the cast effectively, though they didn’t make too strong an impression on me. I do wish the cast had been a bit more diverse, and though they faked us out and nicely averted the “black guy dies first” cliche, we did still end up with two white actors, Ferguson and Gyllenhaal, as the last survivors. Still, it does better on the diversity front than Interstellar did.

But what damaged the film for me was its very ending. Major spoilers here: In the climax, we’re made to believe that the final plan to keep the creature from reaching Earth is succeeding, but enough deliberate ambiguity is created that it could go either way, and it isn’t until the final minute that we get the shock reveal that, no, the plan failed and the creature made it to Earth, implicitly dooming humanity. That downer ending left me with a very disheartened feeling. Okay, having the good guys lose is often what defines a horror movie, but I didn’t care for it at all here. This wasn’t the kind of horror movie where the characters are idiot teenagers making stupid decisions so you can feel they deserved what they got. This was a movie where good people made smart and brave decisions that should’ve worked, where they were heroically willing to sacrifice themselves in order to protect humanity as a whole, so having them ultimately fail to defend the Earth feels nihilistic, like it invalidates all their skill and sacrifice and renders everything we’ve seen pointless. It also plays into an anti-science mentality, the old Luddite idea that exploration can only bring ruin. I’ve never cared for that. One thing I liked about Europa Report was that, even though the outcome was tragic, the crew’s efforts still achieved something positive by advancing human knowledge, that their sacrifice served a noble purpose. By comparison, this ending left me with a very hollow and bitter feeling.

Also, in retrospect, Calvin was too superpowerful, too smart and too capable of overcoming everything the characters did to contain or kill it. As believable as the first two acts of the film were, it started to push the limits of credibility in the third act, both where Calvin’s abilities were concerned and in the contrivances necessary to create the climactic situation. There’s even a point where Calvin actively tries to stop Gyllenhaal from doing something that would keep it from reaching Earth, even though there’s no possible way the creature could’ve known enough about orbital physics to know the danger it was in or enough about spacecraft engineering to know how to avert it. Up to then, most everything Calvin managed to do was reasonably credible, but this broke the logic of the story and gave the creature magical omniscience in order to force a shock ending, and I just don’t buy it. The movie should not have ended this way, not just from an optimism standpoint, but from a basic plot logic standpoint. I guess that’s part of why it feels so wrong and frustrating to me — because it was forced rather than earned.

In sum, Life is mostly a very good, smart, believable movie with a sense of wonder (though with a terribly dull title), but the ending really hurts it.

Eclipse walk

I just got back from a long walk I took to watch the eclipse, which was not total here in Cincinnati but pretty darn close (91%). I decided to walk over the University of Cincinnati campus, figuring there would be a lot of other eclipse watchers there, and I ended up watching the watchers more than the eclipse itself. I did have some NASA-approved eclipse glasses, courtesy of the folks at the Shore Leave Convention, who handed them out for free with the convention packets last month. But even with the glasses, I didn’t feel comfortable looking at the Sun more than a few times or for more than a few moments at a time. I think maybe I got a couple of glints of direct sunlight around the edges while orienting myself the first couple of times, so I learned to keep my eyes closed until I could see enough glow through my eyelids to know I was looking the right way.

Still, once you’ve seen a crescent Sun once or twice, you’ve got the general idea. It was more interesting watching the environment and the people. It didn’t get dark enough here for the crickets to chirp or the animals to think it was night or whatever. But the light level softened to a degree I’d call comfortable. Ever since I got surgery for a retinal melanoma in high school, my eyes have been extremely sensitive to sunlight. This afternoon was the first time in ages that I’ve been comfortable without sunglasses while outdoors on a clear, sunny day. I heard some people around me say it was dark, but it looked more than bright enough to me, still definitely sunny, just not glaringly so. Maybe it was darker in shaded areas, though.  And the sky did turn a dimmer shade of blue as the eclipse neared maximum.

As for the people, there were a bunch of students and faculty members milling around watching, many with eclipse glasses, others with handheld filters, quite a few with homemade cereal-box pinhole cameras, at least one with a welder’s mask. A bunch were trying to take cell phone pictures through their eclipse glasses, which didn’t seem like a particularly wise idea to me. A few minutes before maximum, I happened across a group with a telescope that was projecting an image of the Sun on a plate, which gave me a clearer image than my eclipse glasses, so that was handy. (It’s surprising how small the Sun is in your field of view when you can actually look at it. Of course, by an accident of nature, it’s the exact same apparent size as the Moon, which is why total eclipses work.) The group seemed pretty upbeat and engaged with the whole thing, although maybe that was partly since it was an excuse to get out of class. When maximum coverage was reached at 2:29 PM, a round of applause went through the crowd. In what other context would people applaud something just for blocking their view of something else?

It is impressive how close we came to totality, and yet how bright it still was even with just 9% of the Sun still visible. I guess it shows how well the eye can adjust to different light levels. Still, now I have a crick in my neck from looking up so much. And I’m probably one of several million people asking, “So now what do I do with these eclipse glasses?”

Ars Technica interviewed me on STAR TREK time travel

February 12, 2016 2 comments

Ars Technica, a science and technology news site that also covers SF and media, has posted a lengthy, in-depth article by Xaq Rzetelny exploring the science of time travel in Star Trek and discussing my attempts to reconcile and rationalize it in my Department of Temporal Investigations books. I was interviewed for the article, and there are some quotes from me toward the end — and even a quote from an actual physicist reacting to my quotes. You can read the whole piece here:

Trek at 50: The quest for a unifying theory of time travel in Star Trek

Dawn probe reaches Ceres orbit!

Or as I like to call it, a Ceres circuit. Ba-dum-bum!

But Ceres-ly, folks…

This morning, at about 1239 GMT (or 7:39 AM where I am), the Dawn space probe successfully entered orbit around the dwarf planet Ceres. The NASA press release is here:

Nasa Spacecraft Becomes First to Orbit a Dwarf Planet

Unfortunately, Dawn is currently on the dark side of Ceres, and is orbiting slowly enough that it won’t come around to the light side until mid-April. So the best we get for a photo at the moment is this one from March 1:

Ceres March 1 2015

Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

This is historic as the first orbit of a dwarf planet (the New Horizons probe later this year will only fly by Pluto, I believe) and the first time a probe has orbited two different bodies. And it’s significant to me since it means Dawn has now visited both of the Main Belt protoplanets featured in Only Superhuman, first Vesta back in 2011 and now Ceres. With Vesta, the timing was right to let me incorporate a bit of what Dawn discovered into the novel during the revision process — but with Ceres I just have to hope nothing contradicts what I wrote. My main description of Ceres in the book was as follows:

The sunlit side of the dwarf planet was a dusty gray, except for the bright glints where craters or mining operations had exposed fresh ice beneath.

So far, so good, I’d say, given the other photo we got recently:

Ceres bright spots

Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Scientists are speculating that those bright spots might be exposed ice, or maybe salt. Although you know what they kinda look like to me?

The on switch.

More news as it develops…

But what I really want to talk about is INTERSTELLAR (Spoiler review)

December 3, 2014 1 comment

I finally went to see Christopher Nolan’s Interstellar yesterday. I didn’t get the full IMAX experience; only one theater in reach is showing it that way, and I wanted to go to a different theater so that I could visit a couple of stores nearby. But it was still an impressive experience. There is a lot I love about the film, although it has some significant flaws. I tend to agree with a lot of the reviews I’ve seen that certain ideas in the climax really stretch credibility and take one out of the film, which is a problem for a movie that, for the most part, is very heavily grounded in credible science.

The premise of the film is one that feels familiar from a lot of science fiction I’ve read — which is a good thing, given how rarely cinematic sci-fi feels like it engages the same kind of ideas as science fiction literature. The world is dying, and the heroes of the film are scientists and explorers trying to save the human race. The drama comes largely from the clash between the commitment of the protagonists — including Cooper (Matthew McConaughey), Brand (Anne Hathaway), and her father Dr. Brand (the inevitable Michael Caine) — to exploration and human survival and the more intimate, personal concerns of the people they leave behind, notably Cooper’s daughter Murph (Mackenzie Foy as a child, Jessica Chastain as an adult). There are also conflicts arising from the dispute over whether to place rescuing a loved one over the greater needs of the mission, with the conflict generated by the physical and engineering constraints of the situation, and from the profound isolation that drives the film’s main antagonist Dr. Mann (Matt Damon, who seemed to eschew major billing and whom I was surprised to see in the film) to his desperate actions. So even the character drama is mostly (mostly) placed in the context of thoughtful, plausible scientific scenarios, and that was good to see.

There was so much science here that was awesome to see onscreen at last. I loved the portrayal of the wormhole and the dialogue explaining why it has a spherical mouth instead of the cliched funnel shape. It was amazing to see an accurate version of a wormhole portrayed onscreen for once (although the sequence of passage through the wormhole seemed more visually fanciful). I loved the realistic treatment of the spaceships and their physics, and — as in Gravity — I loved, loved, loved the lack of sound in the space scenes. I’ve come to realize that silence can make things feel more real, and not only in space. Even here on Earth, we often see news footage or surveillance-camera footage that’s soundless, or observe something live from a great enough distance that we can’t hear it. So seeing something without hearing it, without a carefully honed accompaniment of clearly audible sound effects, can make it feel more like a real event and less like a constructed artifice. I had the same reaction to the shot of the Endurance passing by Saturn, visible only as a distant point of light. I gasped in awe at that, because the very absence of clarity and detail made it feel like I was looking at the real thing rather than a constructed special effect.

The reason there’s so much good science is because Nolan made the film in cooperation with Kip Thorne, the physicist whose work on wormholes for Carl Sagan’s novel Contact led him to a whole new field of wormhole physics that improved our understanding of general relativity and the way it could apply in extreme situations. This is taking that kind of collaboration to the next level, since Thorne was actually an executive producer on the film and was involved in every level of building the story. So there is so much good science and effective science exposition — naturally a bit simplified for movie audiences, but nothing that really felt badly wrong or misunderstood by the screenwriters. Even areas other than physics were well-handled. I gather that the filmmakers met with a team of biologists to work out a plausible mechanism for the blight that’s killing all the crops on Earth. And it was so refreshing to see cryogenic pods that didn’t have big windows that would let tons of heat in, that were more like realistic deep-freeze units.

But all that good science made it harder to tolerate the more fanciful moments, the parts that Nolan apparently considered non-negotiable and that Thorne had to compromise on as best he could. The severity of the time dilation on the ocean planet near the black hole was hard to justify, although apparently Thorne found an equation that made it just barely believable. The second planet they visited was just plain weird… so, it’s… made of clouds of solid ice, and has no surface? It’s just some kind of spongy ball of ice? And yet it has 80 percent of Earth’s gravity? There’s just no way that works. Even if such a body could form, if it were so low in density, it would never have gravity anywhere near that high. And it’s more likely that it would condense into a more solid ball of ice. This was just weird. Thorne has said it’s the part he’s most unhappy with.

Also, I’m disappointed that a movie nominally about the wonders of exploration doesn’t give us more interesting environments. We get a bunch of ocean and a bunch of ice, and that’s about it. So monochrome! Apparently the earlier draft by screenwriter Jonathan Nolan had more planetary exploration and even aliens, but director Nolan stripped most of it out.

Oh, and how was that NASA facility supposed to work as a centrifuge if it ever launched? All those vertical columns next to the walls would become big horizontal obstructions at chest level.

But the climax of the film is what really pulled me out of the story, and here’s where we get into the heavy spoilers. So Cooper falls into the black hole — okay, there was Thorne-guided dialogue explaining reasonably why it was the kind of black hole that could allow a survivable entry — and ends up in a tesseract spacetime manifold constructed by the 5-dimensional “bulk beings” that are actually the far-future evolved descendants of humanity reaching back to help us save ourselves. Okay, I can buy that conceit. And I can buy the premise that only gravity can cross the dimensions and transcend time, which is why the bulk beings could only send Cooper and the robot TARS back to Sol System in the relative present and could only send a message back in time. (String theory says that most kinds of particle/string are attached to the 4-dimensional brane of our universe, but gravitons are detached from it and can leak through to other universes, which may be why gravity is so weak.) But still, that’s something I had to reason out after the fact. As it was presented — Cooper just magically turning out to be the “ghost” and sending cryptic messages to Murph through “gravity” — it felt silly and fanciful. Thorne did his best to ground Nolan’s idea in some kind of plausible context, but it’s hard to believe that a force as weak as gravity could be focused tightly enough to have the fine-scale effects shown in Murph’s room. More to the point, even if it can be justified physically in terms of Sufficiently Advanced Technology for 5-dimensional gravity control and spacetime manipulation, there’s the deeper question of why. Why employ such convoluted methods to send the quantum data to Murph? Couldn’t the bulk beings just send the message directly instead of setting up this contrived father-and-daughter-connecting-across-time situation? The only excuse I could think of as I walked back to my car after the movie was that maybe they were so far in the posthuman future that they no longer remembered our languages and communication methods and thus needed a human intermediary to interpret for them. But then, how were they able to communicate to TARS sufficiently that he could explain the situation to Coop? And why couldn’t TARS transmit the data? It felt like Nolan’s intent was to build on Brand’s earlier speech about love being a force that could transcend time and space, that it was only Coop’s love for his daughter that let him connect. But as a number of other critics have said, that’s sentimental silliness in the context of such a hard-science film. It’s a maudlin, corny scenario that just doesn’t feel right, and it’s a shaky foundation for an otherwise mostly solid film.

On top of which, how the hell did adult Murph figure out that it was her father communicating with her? There was no evidence presented to her that would’ve let her make that deduction. She just magically knew it because the timing of the montage demanded that she recognize it at the same time the audience did. It’s the one part where there wasn’t even an attempt to assert some kind of rational justification for the sentimental situation, and the worst part of the sequence. Heck, it wasn’t even justified from a character standpoint. For all these years, she’s felt that her father abandoned her. Why would she suddenly, based on nothing but the Morse-code “STAY” that she’d already known about at age 10, do a total about-face in her perceptions and suddenly believe that her father had been sending her messages from the future all along? Where the hell does that come from, either as an intellectual leap or an emotional epiphany? The only reason she got there was because the script made her do it. That’s as dishonest from a character standpoint as it is from a plausibility standpoint.

And that’s a shame, because the visual portrayal of the tesseract is brilliant. It’s unlike anything I’ve seen onscreen before, and it’s a marvelous visualization of the idea of time as a traversable dimension, although I could quibble about the details.

There’s one other area where the film’s realism failed badly, and it’s more disturbing. This film is set in the United States sometime in the future, probably the latter half of the 21st century. By then, demographic trends suggest that the US is going to be a white-minority nation. I’m sure that the current pool of physicists, engineers, and astronauts working for or with NASA is already highly diverse today. And yet the cast of this film was overwhelmingly white. There were only two black characters in the film, a school principal who appeared in a single scene and a token member of the expedition who stayed behind on the ship on the first landing and then got killed off at the midpoint. The only vaguely positive thing that can be said is that at least the black guy was the second one killed off instead of the first. Other than that, there were only a couple of uncredited bit players in the background. And the only Asian face I noticed in the film was a photo of one of the missing astronauts, one they didn’t bother to rescue. I don’t think there were any Hispanic characters in the film at all. The robots got more screen time in this movie than anyone nonwhite. This is a story about the survival of all humanity, yet virtually the only humans given any agency or participation in the story are white people with Anglo-Saxon names. In a film that strives for realism on so many levels, this is a gross failure of plausibility and common sense. I’m sick of the Hollywood establishment being so out of step with reality when it comes to inclusion in feature films. Television is increasingly catching up to reality as executives realize that their audience is diverse and they can make more profit by appealing to that diversity. But movie executives still apparently haven’t caught on.

On a more positive note, I wanted to commend Hans Zimmer’s score. As I’ve remarked before, I find Zimmer a chameleonic composer that I have a mixed response to; he’s good at adapting to what different directors want, so sometimes I find his work brilliant and fascinating, yet on other films I really don’t like it at all. I really disliked his work on Nolan’s Batman films, Inception, and the Nolan-produced Man of Steel, finding those scores ponderous and blaring, so I wasn’t expecting to like his score for Interstellar. But it’s actually very good. It’s in kind of a Philip Glass-y, minimalist vein, but it works well for the film. I’m glad that it ends up being another tick in the plus column for the film rather than adding another minus.

All in all, then, Interstellar is a film that mostly works as an installment in the all too small but growing category of hard-science fiction motion pictures. It’s more successful than Gravity at being believable, and hopefully it will add momentum to the trend of SF films getting more grounded in real science. In many ways, it’s a refreshing treat for fans of physics and hard SF. But it has a couple of major flaws that are hard to get past, especially for fans of physics and hard SF.